Compression with Flows via Local Bits-Back Coding

Jonathan Ho, Evan Lohn, Pieter Abbeel

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

Background

Lossless compression with likelihood-based generative model p(x)

• Information theory: a uniquely decodable code exists with lengths

 $\approx -\log p(x)$

- Training (maximum likelihood) optimizes expected codelength
- But what about **computational efficiency** of coding?

Existing compression algorithms

- Naive algorithm requires enumerating all data. Needs exponential resources in data dimension
- Must harness structure of p(x) to code efficiently
 - Autoregressive model: code one dimension at a time
 - Latent variable models trained with variational inference: bits-back coding

Flow models

- Flow model: smooth invertible map between noise and data
- They are likelihood-based, so coding algorithm must exist
- This work: computationally efficient coding for flows

 $\mathbf{z} \sim \mathcal{N}(0, I)$

Local approximations of flows

- Strategy for coding: locally approximate the flow as a VAE, then apply bits-back coding
- Flow model maps data to latent: $\mathbf{z} = f(\mathbf{x})$
- Construct a VAE where f is $q(\mathbf{z}|\mathbf{x})$ and f⁻¹ is $p(\mathbf{x}|\mathbf{z})$

• The VAE bound will closely match the flow's log likelihood

Local bits-back coding

- Our algorithm is bits-back coding on this VAE approximation of the flow
- Straightforward implementation needs cubic time in data dimension. No assumptions on flow structure.
- Better than exponential, but not fast enough

Specializing local bits-back coding

- Making extra assumptions on the flow lets us speed up compression
- For RealNVP family: linear time, fully parallelizable compression by exploiting structure of coupling layers and composition

Results

• Implemented for Flow++, a RealNVP-type flow model

Compression algorithm	CIFAR10	ImageNet 32x32	ImageNet 64x64
Theoretical	3.116	3.871	3.701
Local bits-back (ours)	3.118	3.875	3.703

- State of the art fully parallelizable compression on these datasets
 - Requires "auxiliary bits" for bits-back coding
 - Codelength can degrade if auxiliary bits are unavailable

Results: speed

 Specializing local bits-back to the RealNVP structure speeds up compression by orders of magnitude

Algorithm	Batch size	CIFAR10	ImageNet 32x32	ImageNet 64x64
Black box (Algorithm 1)	1	64.37 ± 1.05	534.74 ± 5.91	1349.65 ± 2.30
Compositional (Section 3.4.3)	1 64	$\begin{array}{c} 0.77 \pm 0.01 \\ 0.09 \pm 0.00 \end{array}$	$\begin{array}{c} 0.93 \pm 0.02 \\ 0.17 \pm 0.00 \end{array}$	$0.69 \pm 0.02 \\ 0.18 \pm 0.00$
Neural net only, without coding	1 64	$0.50 \pm 0.03 \\ 0.04 \pm 0.00$	$0.76 \pm 0.00 \\ 0.13 \pm 0.00$	$0.44 \pm 0.00 \\ 0.05 \pm 0.00$

Conclusion

- Local bits-back coding: compression with flow models
 - Naive algorithm: exponential time in data dimension
 - Our algorithm for general flows: polynomial time
 - Our algorithm for RealNVP family: linear time and parallelizable
- For algorithm details and comparisons to other types of models, come to our poster!
- Open source: github.com/hojonathanho/localbitsback